要理解电容器的无功功率补偿原理,首先要知道什么是无功功率。
无功功率是感性负载用以电磁能量转换的一部分能量,这部分能量不会被消耗,而是在负载和电源之间来回传递。这句话可能比较难理解。
换一种解释方式:我们知道直流电路电压乘以电流等于功率。那么在交流电路,如果电压和电流有相位差,电压乘以电流就需要用高等数学,得到的答案是两部分,一部分是时间t的函数称为有功功率,另一部分是sint的函数称为无功功率。
电感元件无功功率的特点是一会儿吸取电网电能转换为磁场能量,一会儿磁场能量转换为电能还归电网。
电容元件无功功率吸收和释放的周期正好与电感元件相反。电感吸收电能时电容释放电能,电感释放电能是电容吸收电能转换成电场能量。
在没有电容时,感性负载都需要与发电机交换无功功率,导致大量的无功功率电流占用了输变电容量。在负载侧加装补偿电容器,就相当于在负载端加装了无功功率发电机,感性负载就可以就近与电容器交换无功功率,减少无功功率的长距离输送,减小了输变电电流,提高了负载端电压,这就是电容无功补偿的意义。
当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。
电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。此时电流滞后电压一个角度φ。在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的矢量和:
无功功率为:
有功功率与视在功率的比值为功率因数:
cosf=P/S
无功功率的传输加重了电网负荷,使电网损耗增加,系统电压下降。故需对其进行就近和就地补偿。并联电容器可补偿或平衡电气设备的感性无功功率。当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。
如果选择电容器功率为Qc,则功率因数为:
cosφ= P/ (P2 + (QL-Qc)2)1/2在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量:
Qc = P(tanf1 - tanf2)=P〔(1/cos2f1-1)1/2-(1/cos2f2-1)1/2〕
式中:
Qc一电容器的安装容量,kvar
P一系统的有功功率,kW
tanφ1--补偿前的功率因数角, cosf1--补偿前的功率因数
tanφ2--补偿后的功率因数角, cosf2--补偿后的功率因数[1] 在大系统中,无功补偿还用于调整电网的电压,提高电网的稳定性。在小系统中,通过恰当的无功补偿方法还可以调整三相不平衡电流。按照wangs定理:在相与相之间跨接的电感或者电容可以在相间转移有功电流。因此,对于三相电流不平衡的系统,只要恰当地在各相与相之间以及各相与零线之间接入不同容量的电容器,不但可以将各相的功率因数均补偿至接近1,而且可以使各相的有功电流达到平衡状态。