y的导数-y=cosx, y(0)=0,求特解

2025-01-21 15:32:26
推荐回答(1个)
回答1:

y' - y = cosx........................(1)
y(0) = 0..............................(2)
设(1)的特解为:
y* = a(cosx - sinx)..............(3)
将(3)代入(1):
a(-sinx-cosx)-a(cosx-sinx) = cosx
-2acosx = cosx
解出:a = -1/2...................(4)
最后得到(1)的特解:
y*(x) = (sinx - cosx)/2.........(5)
(1)的通解为:
y(x) = Ce^(x) + (sinx - cosx)/2............(6)
由(2)确定 C = 1/2
最后(1)的通解:
y(x) = 0.5[e^(x) + sinx - cosx].............(7)