求极限lim(n→无穷) sinπ√(n^2+1)

2024-12-04 23:54:01
推荐回答(2个)
回答1:

利用三角函数诱导公式加一项,再分子有理化,过程如下:

lim(n→无穷大)sin[根号下(n^2+1)]*π 

=-lim(n→无穷大)sin{[根号下(n^2+1)]-n}*π 

=-lim(n→无穷大)sin{π/sin[根号下(n^2+1)+n]}

=0

扩展资料

极限的产生


与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

回答2:

好久没做过题了,你把这个展开,会得到一个分式,然后分别求极限