y' - y=x,特征方程 t - 1=0,根 t=1,齐次方程通解 y=Ce^x,设特解 y=bx+c,代入得 b=(b+1)x+c,所以 b+1=0,b=c,解得 b=c= - 1,所以,原方程通解为 y=Ce^x - x - 1