根据洛必达法则应用条件来做
∵
正弦函数在x=0处的带佩亚诺型的泰勒展开式:
sinx=nk=1(−1)k−1x2k−1(2k−1)!+o(x2k−1)
∴
函数在x=0处的三阶泰勒展开式分别为:
sinx=x−x33!+o(x3)
sin(3x)=3x−(3x)33!+o(x3)
∴
f(x)=3sinx-sin(3x)
=3[x−x33!+o(x3)]−[3x−(3x)33!+o(x3)]
=3x−x32−3x+9x32+o(x3)
=4x3+o(x3)
∴
limx→03sinx−sin(3x)cxk=limx→04x3+o(x3)cxk=1
对于分子,分母均为多项式且x→0来讲,当极限为非零常数时,分子和分母的最高幂次相等
∴k=3
∴c=4
故选:C