设随机变量U服从标准正态分布N(0,1),利用标准正态分布表,试求P(U<2.17)

2024-11-06 04:30:22
推荐回答(1个)
回答1:

P(X/Y<0)=0.5

使用正态分布与独立性分析:

(x,y)~N(0,0,1,1,0)

说明X~N(0,1),Y~N(0,1)

且X与Y独立

X/Y<0,即X与Y反号

所以P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)

=P(X>0)P(Y<0)+P(X<0)P(Y>0)

=0.5×0.5+0.5×0.5

=0.5

解:

∵  (x,duy)~N(0,0,1,1,0)

∴X~N(0,1),Y~N(0,1)

且X与Y独立

∵X/Y<0,即X与Y反号

∴ P(X/Y<0)

E(X)=1

D(X)=4

E(X^2)=D(X)+E(X)^2=5

E(Y)=1

D(Y)=9

E(Y^2)=D(Y)+E(Y)^2=10

∴E(X^2Y^2)=E(X^2)E(Y^2)=50

扩展资料:

则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

本词条的正态分布是一维正态分布,此外多维正态分布参见“二维正态分布”。

参考资料来源:百度百科-正态分布