计算二重积分∫∫√(x^2+y^2)dxdy,其中D是由x^2+y^2

2025-01-13 07:13:11
推荐回答(2个)
回答1:

化成极坐标,x^2+y^2≤2x,变成r=2cosθ

积分区域;0≤r≤2cosθ,

π/2≤θ≤π/2,

区域以X轴为上下对称,只求第一象限区域,再2倍即可,

I=2∫[0,π/2] dθ∫[0,2cosθ] r*rdr

=2∫[0,π/2] dθ (r^3/3)[0,2cosθ]

=(2/3)∫[0,π/2] *8(cosθ)^3 dθ

=(16/3)∫[0,π/2] [1-(sinθ)^2]d(sinθ)

=(16/3)[sinθ-(sinθ)^3/3] [0,π/2]

=(16/3)[1/2-1/8)

=32/9

扩展资料

意义

当被积函数大于零时,二重积分是柱体的体积。

当被积函数小于零时,二重积分是柱体体积负值。

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

回答2:

简单计算一下即可,答案如图所示