已知空间直线的点向式方程,和空间里一个点,怎么求点到直线的距离? PS:点向式方程,参数式方程

2025-04-14 22:19:34
推荐回答(1个)
回答1:

若直线过点P(x0,y0),方向向量v=(v1,v2)
则直线的点向式方程可写为:
v2*(x-x0) - v1*(y-y0)=0
上式去括号得:
v2*x- v2*x0 - v1*y + v1*y0=0
即v2*x - v1*y + v1*y0 - v2*x0 =0
这就是所求的直线的一般式方程,其中法向量n=(v2,-v1)
.
若已知直线的一般式方程为Ax+By+C=0且过点P(x0,y0)
可知直线的法向量n=(A,B)
那么直线的一个方向向量v=(-B,A)
所以直线的点向式方程可写为:A*(x-x0)-(-B)*(y-y0)=0
距离为(|Ax0+By0+c|)/根号下(A^2+B^2)