(Ⅰ)∵当n≥2时,snsn-1-3sn+2=0,a1=
.2 3
∴当n=2时,
s2?3s2+2=0,解得s2=2 3
.6 7
则a2=s2?a1=
?6 7
=2 3
.4 21
当n=3时,
s3?3s3+2=0,解得s3=6 7
,可得a3=14 15
.8 105
(Ⅱ)当n≥2时,snsn-1-3sn+2=0,由bn=
得sn=1+1
Sn?1
,1 bn
于是(1+
)(1+1 bn
)?3(1+1 bn?1
)+2=0,1 bn
化简,得bn=2bn-1-1,从而bn-1=2(bn-1-1),
∴{bn-1}是以2为公比的等比数列.∴bn-1=(b1-1)?2n-1=-2n+1,bn=-2n+1+1.
(Ⅲ)由(2),得
=
Sn+1?1
Sn?1
=bn bn+1
=1?2n+1
1?2n+2
?1 2
=1 8?2n?2
?1 2
1 7?2n