质数(prime number)又称素数,有无限个。
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。
扩展资料:
分布规律
以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。
孪生质数也有相同的分布规律。
以下15个区间内质数和孪生质数的统计数。
S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)
S2区间73——216,有素数27个,孪生素数7对。
S3区间217——432,有素数36个,孪生素数8对。
S4区间433——720,有素数45个,孪生素数7对。
S5区间721——1080,有素数52个,孪生素数8对。
S6区间1081——1512,素数60个,孪生素数9对。
S7区间1513——2016,素数65个,孪生素数11对。
S8区间2017——2592,素数72个,孪生素数12对。
S9区间2593——3240,素数80个,孪生素数10对。
S10区间3241——3960,素数91个,孪生素数19对。
S11区间3961——4752素数92个,孪生素数17对。
S12区间4752——5616素数98个,孪生素数13对。
S13区间5617——6552素数108个,孪生素数14对。
S14区间6553——7560素数113个,孪生素数19对。
S15区间7561——8640素数116个,孪生素数14对。
素数分布规律的发现,许多素数问题可以解决。
参考资料:百度百科-质数
就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢? 质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。 有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。 被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=641*6700417,并非质数,而是合数。 更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑! 17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。 还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。 还有一种质数叫费马数。形式是:Fn=2^(2^n)+1 是质数的猜想。 如F1=2^(2^1)+1=5 F2=2^(2^2)+1=17 F3=2^(2^3)+1=257 F4=2^(2^4)+1=65537 F5=2^(2^5)+1=4294967297 前4个是质数,因为第5个数实在太大了,费马认为是实数,并提出(费马没给出证明) 后来欧拉算出F5=641*6700417. 目前只有n=0,1,2,3,4,Fn才是质数. 现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。
[编辑本段]入门
最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x
算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2...p_s, 这里p_1≤p_2 ≤...≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》
[编辑本段]素数分布问题
素数分布问题,就是指素数在正整数集或其特殊子集中的分布情况,比如素数个数问题等等。这方面的结果如下; (1)欧几里得以反证法证明了素数个数无限;欧拉利用解析方法也证明了此结论。 (2)高斯提出著名的素数定理(当时是猜想,后被证明): 设π(x)是不超过x的素数个数, 那么极限(x趋向于无穷) lim π(x)/(x/Ln x)=1 更好的逼近公式有高斯提出的li(x)函数, 即lim π(x)/lix=1。 其中 (3) 狄利克雷 证明了任何等差数列: a, a+d,a+2d,...a+nd,... (这里a,d互质)中都包含无限个素数。 (4) 兰伯特猜想(已被证明): 在n和2n之间必定存在一个素数, 这里n是大于1的正整数。 十亿以内素数分布及概率 "10" |4 |40% “100” |25 |25% “1000” |168 |16.8% “10000” |1229 |12.29% “100000” |9592 |9.592% “1000000” |78498 |7.8498% “2000000” |148933 |7.44665% “10000000” |664579 |6.64579% “100000000” |5761455 |5.761455% “200000000” |11078937 |5.5394685% “300000000” |16252325 |5.41744167% “400000000” |21336336 |5.334084% “500000000” |26355877 |5.2711754% “600000000” |31324713 |5.2207855 % “700000000” |36252941 |5.17899157% “800000000” |41146189 |5.143273625% “900000000” |46009225 |5.1121361% “1000000000” |50847544 |5.0847544% 可以看出,越往后质数比例愈小,但总数却是增多, 可以看出素数的个数是无限的,这一结论已经被古希腊数学家欧几里得在其著作《几何原本》中用反证法证明。
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位
就是质数。就是比一大的自然数中,除了自身以及一以外都不能整除的数。如2,3,5,7等。不能进行因式分解的。用计算机语言表述:就是数A,在(2~A的开方)内的整数,A都不能被整除。那么A就是质数,或素数。
素数就是质数,概念是这样的:除了0之外的自然数中,只能被1和它本身整除的数叫做质数(也称素数),望你能采纳我的回答哦!