f(x)=a*b=√3sinxcosx+cos^2x=√3/2sin2x+1/2cos2x+1/2=sin(2x+π/6)+1/2x∈[-π/6,π/3]2x+π/6∈[-π/6,5π/6]f(x)=sin(2x+π/6)+1/2在[-π/6,5π/6]上值域为:[0,3/2]当x=-π/12时,f(x)有最小值=0当x=π/6时,f(x)有最大值=3/2