求定积分∫(上限根号3,下限1) 1⼀x눀根号下(1+x눀) dx

2025-01-20 20:14:17
推荐回答(1个)
回答1:

答:

∫ {1/[x²√(1+x²)]}dx 设x=tant∈[1,√3],π/4<=t<=π/3
=∫{1/[tan²t*1/cost]}d(tant)
=∫ (cos³t/sin²t)*(1/cos²t)dt
=∫(cost/sin²t)dt
=∫(1/sin²t)d(sint)
=-1/sint+C
所以定积分=-√2-(-2/√3)=2/√3-√2=2√3/3-√2
所以定积分=2√3/3-√2