1、左边增加的式子是 1/2^k+1/(2^k+1)+1/(2^k+2)+......+1/(2^k+2^k-2)+1/(2^k+2^k-1) ,
也就是 1/2^k+1/(2^k+1)+1/(2^k+2)+.......+1/[2^(k+1)-1] 。
2、因为每项均为正数,因此把待证的不等式转化为 Sn*S(n+2)<[S(n+1)]^2 ,
(1)当 q=1 时,不等式化为 na1*(n+2)a1<[(n+1)a1]^2 ,进而化为 n(n+2)<(n+1)^2 ,
移项有 n(n+2)-(n+1)^2=(n^2+2n)-(n^2+2n+1)= -1<0 显然成立,因此原不等式成立;
(2)当 q ≠ 1 时,不等式化为 a1(1-q^n)/(1-q)*a1[1-q^(n+2)]/(1-q)<[a1(1-q^(n+1))/(1-q)]^2 ,
化为 (1-q^n)[1-q^(n+2)]<[1-q^(n+1)]^2 ,
移项有 (1-q^n)[1-q^(n+2)]<[1-q^(n+1)]^2=[1-q^n-q^(n+2)+q^(2n+2)]-[1-2q^(n+1)+q^(2n+2)]
= -q^n*(1-q)^2<0 ,
因此原不等式成立。