解:
∵sin(a+π/2)=-√5/5 a∈(0,π)
∴cosa=-√5/5 a∈(π/2,π)
∴sina=2√5/5
于是
sin2a=2sinacosa=2×2√5/5×(-√5/5)=-4/5
cos2a=2cos²a-1=2×(-√5/5)²-1=-3/5
cos(2a-3π/4)
=cos(3π/4-2a)
=cos[π-(π/4+2a)]
=-cos(π/4+2a)
=-√2/2cos2a+√2/2sin2a
=√2/2(sin2a-cos2a)
=√2/2×(-4/5+3/5)
=√2/2×(-1/5)
=-√2/10