极限符号不好打,答案是e^2,过程请看下图:
扩展资料:
闭区间上的连续函数具有一些重要的性质,是数学分析的基础,也是实数理论在函数中的直接体现。下面的性质都基于f(x)是[a,b]上的连续函数得出的结论。
1、有界性
闭区间上的连续函数在该区间上一定有界。
所谓有界是指,存在一个正数M,使得对于任意x∈[a,b],都有|f(x)|≤M。
2、最值性
闭区间上的连续函数在该区间上一定能取得最大值和最小值。
所谓最大值是指,[a,b]上存在一个点x0,使得对任意x∈[a,b],都有f(x)≤f(x0),则称f(x0)为f(x)在[a,b]上的最大值。最小值可以同样作定义,只需把上面的不等号反向即可。
3、介值性
若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。
这个性质又被称作介值定理,其包含了两种特殊情况:
a、零点定理。
也就是当f(x)在两端点处的函数值A、B异号时(此时有0在A和B之间),在开区间(a,b)上必存在至少一点ξ,使f(ξ)=0。
b、闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。
也就是设f(x)在[a,b]上的最大值、最小值分别为M、m(M≠m),并且f(x1)=M,f(x2)=m,x1、x2∈[a,b]。在闭区间[x1,x2]或[x2,x1]上使用介值定理即可。
4、一致连续性
闭区间上的连续函数在该区间上一致连续。
所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。
参考资料来源:百度百科-求导
如图: