设随机变量X服从参数为1的指数分布,记Y=max(X,1),求Y的分布函数

2024-11-23 00:02:58
推荐回答(2个)
回答1:

1、积0-2(∫0-2) 

X的分布函数 f(x)=e^(-x) (x>0)

0 (x<=0)

Y=max(X,2) 则Y的分布函数 f(y)=e^(-y) (y>2) (指数分布)

∫f(x)dx/2(积分区间0-2) =(1-1/e^2)/2 (2>y>0) (均匀分布)=0 (y<0)

EY=∫yf(y)dy=(∫0-2) y(1-1/e^2)/2dy+(∫2-+∞)ye^(-y)dy ∫ye^(-y)dy=-(1+y)e^(-y)=(1-1/e^2) +3/e^2=1+2/e^2

EY=∫yf(y)dy=(∫0-2) y(1-1/e^2)/2dy+(∫2-+∞)ye^(-y)dy  

2、设Z=max{X,Y}

Z<0时,FZ(z)=0.

0<=Z<=1时

FZ(z)=P(Z<=z)=P(max{X,Y}<=z)=P(X<=z)P(Y<=z)=z*(1-e^(-z))

z>1时。

FZ(z)=P(Z<=z)=P(max{X,Y}<=z)=P(X<=z)P(Y<=z)=1-e^(-z)

因此密度函数

fZ(z)=1-e^(-z)+ze^(-z),0<=Z<=1

fZ(z)=e^(-z), Z>1

其他为0.

扩展资料:

离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。

若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。

如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间上的概率。

参考资料来源:百度百科-分布函数

回答2: