洛必达法则使用条件是什么?

2025-01-20 02:38:32
推荐回答(2个)
回答1:

  三个条件。\r\n  1 分子分母同趋向于0或无穷大 。\r\n  2 在变量所趋向的值的去心邻域内,分子和分母均可导 。\r\n  3 分子和分母分别求完导后比值存在或趋向于无穷大。\r\n  洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。

回答2:

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。

因此求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。在运用洛必达法则之前,首先要完成两项任务:一个是分子分母的极限是否都等于零(或者无穷大),另一个是分子分母在限定的区域内是否分别可导。

扩展资料:

注意事项:

洛必达使用逻辑是有点诡异的,右侧极限存在,回推原极限存在,注意这里的存在包括无穷。那么不存在的情况,我们目前接触的应该是震荡的情况,需要找其他方法,通常比洛必达还要简单。

有些函数求导后会更加复杂,或者在选取分子分母的时候要比较细心,如果发现很难算,一定记得回头,调换分子分母试一下或者另谋它法。

参考资料来源:百度百科-洛必达法则