已知z=ln(xy+y²),求二阶偏导数解:z=ln[y(x+y)]=lny+ln(x+y)∂z/∂x=1/(x+y);∂z/∂y=(1/y)+1/(x+y);∂²z/∂x²=-1/(x+y)²;∂²z/∂y²=-1/y²-1/(x+y)²;∂²z/∂x∂y=-1/(x+y)².
z=ln(xy+y^2), z'=y/(xy+y^2), z'=(x+2y)/(xy+y^2),z''=-y^2/(xy+y^2)^2, z''=z''=[xy+y^2-y(x+2y)]/(xy+y^2)^2=-y^2/(xy+y^2)^2,z''=[2(xy+y^2)-(x+2y)^2]/(xy+y^2)^2=-(x^2+2xy+2y^2)/(xy+y^2)^2.