对弧长的曲线积分求的是什么,也就是几何意义,对坐标的曲线积分呢

2024-11-08 16:24:44
推荐回答(2个)
回答1:

1)第一类曲线积分

a、不含被积函数,是曲线积分长度

b、含被积函数,理解为被积函数是曲线线密度,积分就是曲线质量

2)第二类曲线积分

把积分函数看成力F,积分之后为力F沿着曲线所作功。

扩展资料

曲线积分分为:

(1)对弧长的曲线积分 (第一类曲线积分)

(2)对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号

参考资料来源:百度百科-曲线积分

回答2:

对弧长的曲线积分:
如被积函数是弧的线密度,这个积分可以求出这段弧的质量。
特殊的,当被积函数是1的话,可以求出弧的长度。

对坐标的,就是曲边梯形的面积。