结果如下图所示,望采纳
2(lg√2)^2
=2[ (1/2)lg2]^2
=(1/2)(lg2)^2
lg√2.lg5
=(1/2)lg2.lg5
√[ (lg √2)^2 -2lg√2 +1 ]
=√(1-lg √2)^2
=1-lg√2
=1-(1/2)lg2
//
2(lg√2)^2 +lg√2.lg5 +√[ (lg √2)^2 -2lg√2 +1 ]
=(1/2)(lg2)^2 +(1/2)lg2.lg5 +1-(1/2)lg2
=(1/2)(lg2)( lg2 -1) +(1/2)lg2.lg5 +1
=-(1/2)(lg2)( lg5) +(1/2)lg2.lg5 +1
=1
解答详见下图