七年级下册数学期中考试试卷。

2024-11-09 09:39:14
推荐回答(2个)
回答1:

七年级(下)数学期中复习测试题\x0d\x0a一.精心选一选(每小题只有一个正确答案,每题3分,共30分)\x0d\x0a1.下列说法正确的有()个。\x0d\x0a(1)相等的角是对顶角;(2)过一点有且只有一条直线与己知直线平行;(3)垂直于同一条直线的两条直线互相平行;(4)两直线被第三条直线所截,同位角相等;(A)0个(B)1个(C)2个(D)3个\x0d\x0a2.一条河流两次拐湾后的流向不变,那么两次拐湾的角度可能是()\x0d\x0a(A)第一次右拐50度,第二次左拐130度;\x0d\x0a(B)第一次左拐50度,第二次左拐130度;\x0d\x0a(C)第一次右拐50度,第二次右拐50度;\x0d\x0a(D)第一次左拐50度,第二次右拐50度\x0d\x0a3.如右图,不能判定AB‖CD的条件是()\x0d\x0a(A)∠B+∠BCD=1800;(B)∠1=∠2;(C)∠3=∠4;(D)∠B=∠5.\x0d\x0a4.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是()\x0d\x0a(A)40°(B)50°(C)130°(D)140°\x0d\x0a5.下列各式中,不能用平方差公式计算的是()\x0d\x0a(A)(B)\x0d\x0a(C)(D)\x0d\x0a6.已知是完全平方式,则k的值为()\x0d\x0a(A)6(B)(C)-6(D)\x0d\x0a7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()\x0d\x0a(A)(B)(C)(D)\x0d\x0a\x0d\x0a8.下列说法中,正确的是()\x0d\x0a(A)近似数5.0与近似数5的精确度相同。\x0d\x0a(B)近似数3.197精确到千分位,有四个有效数字。\x0d\x0a(C)近似数5千和近似数5000精确度相同。\x0d\x0a(D)近似数23.0与近似数23的有效数字都是2,3。\x0d\x0a\x0d\x0a9.如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=()\x0d\x0a(A)70°(B)110°(C)100°(D)80°\x0d\x0a\x0d\x0a10.如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,\x0d\x0a∠MNB=115°,则下列结论正确的是()\x0d\x0a(A)∠A=∠C(B)∠E=∠F(C)AE‖FC(D)AB‖DC\x0d\x0a\x0d\x0a二.用心填一填(每题3分,共15分)\x0d\x0a11.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_________.\x0d\x0a12.如图所表示的数学公式是12题b\x0d\x0a\x0d\x0a13.如图(3),折叠宽度相等的长方形纸条,若∠1=620,则∠2=_______度\x0d\x0a\x0d\x0a14.如图,AB⊥AC,AD⊥AE则图中互余的角有_______对.\x0d\x0aCE\x0d\x0a\x0d\x0aD\x0d\x0a\x0d\x0aBAF\x0d\x0a15.如图,用黑白两种颜色的正六边形地面砖按如下规律拼成若干个图案,那么第n个图案中的白色地面砖有________块.\x0d\x0a\x0d\x0a三.仔细做一做(共55分)\x0d\x0a16.(5分)某商店举办有奖销售活动,购物满100元者发对奖券一张。在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。若某人购物刚好满100元,分别求此人中特等奖,一等奖,二等奖以及中奖的概率各是多少。\x0d\x0a\x0d\x0a17.(5分)\x0d\x0a\x0d\x0a18.(6分)已知x=,y=-1,求的值\x0d\x0a\x0d\x0a19.(6分)下列事件中,哪些是不确定事件,哪些是必然事件,哪些是不可能事件?\x0d\x0a(1)在标准大气压下,温度达到100C时水会沸腾;(2)没有水分,种子发芽;(3)从一个班级中任意抽取5人,结果这5人都是男生;(4)明天本市有雨;(5)打开电视机,正在播新闻联播;(6)一个正数的相反数是它本身\x0d\x0a答:不确定事件有:必然事件有:\x0d\x0a\x0d\x0a不可能事件有:\x0d\x0a\x0d\x0a20.如图,a‖b,b‖c,写出图中各个角之间的等量关系。(只写结论,写对一个得一分,最多得8分)\x0d\x0a\x0d\x0a21.(8分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.(请为每一步推理注明依据)\x0d\x0a结论:∠A与∠3相等,理由如下:\x0d\x0a\x0d\x0a∵DE⊥BC,AB⊥BC(已知)\x0d\x0a∴∠DEC=∠ABC=90°()\x0d\x0a\x0d\x0a∴DE‖BC()\x0d\x0a\x0d\x0a∴∠1=∠A()\x0d\x0a由DE‖BC还可得到:\x0d\x0a∠2=∠3()\x0d\x0a又∵∠l=∠2(已知)\x0d\x0a∴∠A=∠3(等量代换)\x0d\x0a\x0d\x0a22.(8分)一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外者都相同。\x0d\x0a(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此模出白球和模出红球是等可能的。你同意他的说法吗?为什么?\x0d\x0a(2)搅均后从中摸出一个球,请求出不是白球的概率;\x0d\x0a(3)搅均后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?

回答2:

七年级(下)数学期中复习测试题
一.精心选一选(每小题只有一个正确答案,每题3分,共30分)
1.下列说法正确的有( )个。
(1)相等的角是对顶角;(2)过一点有且只有一条直线与己知直线平行;(3)垂直于同一条直线的两条直线互相平行;(4)两直线被第三条直线所截,同位角相等;(A)0个 (B)1个 (C)2个 (D)3个
2.一条河流两次拐湾后的流向不变,那么两次拐湾的角度可能是( )
(A)第一次右拐50度,第二次左拐130度;
(B)第一次左拐5 0度,第二次左拐130度;
(C)第一次右拐50度,第二次右拐50度;
(D) 第一次左拐50度,第二次右拐50度
3.如右图,不能判定 AB‖CD的条件是( )
(A)∠B+∠BCD=1800; (B)∠1=∠2; (C)∠3=∠4; (D)∠B=∠5.
4.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是( )
(A)40° (B)50° (C)130° (D)140°
5.下列各式中,不能用平方差公式计算的是( )
(A) (B)
(C) (D)
6.已知 是完全平方式,则k的值为( )
(A)6 (B) (C)-6 (D)
7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )
(A) (B) (C) (D)

8.下列说法中,正确的是 ( )
(A)近似数5.0与近似数5的精确度相同。
(B)近似数3.197精确到千分位,有四个有效数字。
(C)近似数5千和近似数5000精确度相同。
(D)近似数23.0与近似数23的有效数字都是2 ,3。

9.如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=( )
(A)70° (B)110° (C)100° (D)80°

10.如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,
∠MNB=115°,则下列结论正确的是( )
(A)∠A=∠C (B)∠E=∠F (C)AE‖FC (D)AB‖DC

二.用心填一填(每题3分,共15分)
11.10名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_________.
12.如图所表示的数学公式是 12题 b

13.如图(3),折叠宽度相等的长方形纸条,若∠1=620,则∠2=_______度

14. 如图,AB⊥AC,AD⊥AE则图中互余的角有_______对.
C E

D

B A F
15.如图,用黑白两种颜色的正六边形地面砖按如下规律拼成若干个图案,那么第n个图案中的白色地面砖有________块.

三.仔细做一做(共55分)
16.(5分)某商店举办有奖销售活动,购物满100元者发对奖券一张。在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。若某人购物刚好满100元,分别求此人中特等奖,一等奖,二等奖以及中奖的概率各是多少。

17.(5分)

18.(6分)已知x= ,y=-1,求 的值

19.(6分)下列事件中,哪些是不确定事件,哪些是必然事件,哪些是不可能事件?
(1)在标准大气压下,温度达到100C时水会沸腾;(2)没有水分,种子发芽;(3)从一个班级中任意抽取5人,结果这5人都是男生;(4)明天本市有雨;(5)打开电视机,正在播新闻联播;(6)一个正数的相反数是它本身
答:不确定事件有: 必然事件有:

不可能事件有:

20.如图,a‖b,b‖c,写出图中各个角之间的等量关系。(只写结论,写对一个得一分,最多得8分)

21.(8分)如图,∠l=∠2,DE⊥ BC,AB⊥BC,那么∠A=∠3吗?说明理由.(请为每一步推理注明依据)
结论:∠A与∠3相等,理由如下:

∵DE⊥ BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°( )

∴DE‖BC ( )

∴∠1=∠A( )
由DE‖BC还可得到:
∠2=∠3( )
又∵∠l=∠2(已知)
∴∠A=∠3(等量代换)

22.(8分)一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外者都相同。
(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此模出白球和模出红球是等可能的。你同意他的说法吗?为什么?
(2)搅均后从中摸出一个球,请求出不是白球的概率;
(3)搅均后从中任意摸出一个球,要使摸出红球的概率为 ,应如何添加红球?