(i)2x^2/3+9/x^2-3=(2x^3+27-9x^2)/(3x^2)=(x-3)^2(2x+3)/(3x^2).
(ii)x
∴n>=2时xn>=3.
(iii)9+3x+x^2=(x+3/2)^2+27/4>0,
∴x>=3时2x/3+9/x^2-x=(27-x^3)/(3x^2)=(3-x)(9+3x+x^2)/(3x^2)<=0,
于是2x/3+9/x^2<=x.
(iv)由(iii)立得。
(v)由(ii),(iv),{xn}是递减有下界数列,有极限a,
∴a=2a/3+9/a^2,
a^3=27,a=3,为所求。