数据分析需要哪些思维/能力/知识呢?
比如,数据分析思维、结构化思维、公式化思维、学法体系的思维.......这些思维帮助你,即使碰到自己不熟悉的问题,也能从一定的角度切入分析并保持清晰的逻辑;
一定的业务理解能力,能理解业务背后的商业思路。只有理解问题,才能转换成数据分析的问题,才知道如何设定分析目标并进行分析;
基础理论知识:数理统计、模型原理、近期市场的调研等;
常规分析工具的使桐旁用:常用办公软件(Excel、PPT、思维导图)、数据库、统计分析工具、数据挖掘等;
数据报告和数据可视化的能力。数据分析得再好,如果不能以简洁易懂的方式“表达”,成效也会大打折扣。
等等等,诸如此类的基本知识能力贮备......
那么想要提升这些能力该做点什么呢?下面具体来说说怎么做能把这些基础实力打好。
从分析理论和工具实践着手
1、分析理论
分析理论包括:明确业务场景、确定分析目标、构建分析体系和梳理核心指标。
我们要做的就是,首先明确是什么样的业务场景,不同的业务,分析体系也随之不同;然后,结合业务问题确定分析的目标,列出核心指标,再搜集整理所需要的数据。
推荐书籍:《数据化管理》、《决战大数据 》
数据分析的几个步骤:
(1)数据获取
数据获取往往看似简单,但是它需要分析者对问题进行商业理解,即转化成数据问题来解决,如,需要哪些数据,从哪些角度来分析等,在界定了这些问题后,再进行数据采集。
此环节,需要数据分析师具备结构化的逻辑思维。
推荐书籍:《金字塔原理》、麦肯锡三部曲:麦肯桥轮庆锡意识、工具、方法
推荐工具:思维导图工具(Xmind百度脑图等)
(2)数据处理
数据的处理需要掌握有效率的工具:
Excel及高端技能:
基本操作、函数公式、数据透视表、VBA程序开发。
我一般会先过一遍基础,知道什么是什么,然后找几个case练习。多逛逛excelhome论坛,平常多思考如何用excel来解决问题,善用插件,还有记得保存。
专业的报表工具:
(成规模的企业会用)日常做报表可以设计一个通用模板,只要会写SQL就可上手。
相比excel做报表,这种工具开发的技术要求较低,能很快地开发常规报表、动态报表。
数据库的使用:
熟练掌握SQL语言(很重要!!!),常见的有Oracle、SQL sever、My SQL等。
学习流行的hadoop之类的分布式数据库来提升个人能力,对求职等都会有所帮助。
(3)分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。
因此,熟练掌握一些统计分析工具不可免:
lPSS系列:老牌的统计分析软件,SPSS Statistics(偏统计功能、市场研究)、SPSS Modeler(偏数据挖掘),不用编程,易学。
SAS:经典挖掘软件,需要编程。
R:开源软件,新流行,对非结构化敏握数据处理效率上更高,需编程。
各类BI工具:Tableau、PowerBI、FineBI,对于处理好的数据可作自由的可视化分析,图表效果惊人。
推荐书籍:
《说菜鸟不会数据分析》系列,入门级书,初学者最适。
《数据挖掘与数据化运营实战,思路、方法、技巧与应用》,内容很系统很全面。
《市场研究定量分析方法与应用》,简明等编著,中国人民大学出版社。
(4)数据可视化呈现
很多数据分析工具已经涵盖了数据可视化部分,这时就只需要把数据结果进行有效的呈现和演讲汇报即可,可用word\PPT\H5等方式展现。
2、工具实践
(1)对于入门小白,建议从Excel工具入手,这里以Excel为例:
学习Excel是一个循序渐进的过程:
基础的:简单的表格数据处理、打印、查询、筛选、排序
函数和公式:常用函数、高级数据计算、数组公式、多维引用、function
可视化图表:图形图示展示、高级图表、图表插件
数据透视表、VBA程序开发......
多逛逛excelhome论坛,平常多思考如何用excel来解决问题,学习用各种插件,对能够熟练使用Excel都有帮助。
其中,函数和数据透视表是两个重点。
函数
制作数据模板必须掌握的excel函数:
日期函数:day,month,year,date,today,weekday,weeknum 日期函数是做分析模板的必备,可以用日期函数来控制数据的展示,查询指定时间段的数据。
数学函数:product,rand,randbetween,round,sum,sumif,sumifs,sumproduct
统计函数:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 统计函数在数据分析中具有举足轻重的作用,求平均值,最大值,中位数,众位数都用得到。
查找和引用函数:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 这几个函数的作用不用多说,特别是vlookup,不会这个函数基本上复杂报表寸步难行。
文本函数:find,search,text,value,concatenate,left,right,mid,len 这几个函数多半用在数据整理阶段使用。
逻辑函数:and,or,false,true,if,iferror
(以上学会,基本能秒杀90%的办公室白领!)
数据透视表
数据透视表的作用是把大量数据生成可交互的报表,它具有这样一些重要功能:分类汇总、取平均、最大最小值、自动排序、自动筛选、自动分组;可分析占比、同比、环比、定比、自定义公式等
现实中,取数或报表+EXCEL+PPT似乎还是主流形式。
工具上,无论是业务人员还是分析人员,都可以通过自动取数工具或者BI工具来制作报表,减少重复操作的时间。
其次,增加与业务人员的沟通,充分了解业务需求,当你的业务水平和他们差不多甚至更高时,自然而然知道他们一言两语背后真实的需求是什么了。
最后,站在更高角度上,报表的基本粒度就是指标,可梳理出企业的基本指标体系,从经营分析的角度去做报表,把报表的工作标准化,降低报表的冗余,避免动不动就做一张报表。标准化包括指标分类,指标命名,业务口径,技术口径,实现方式等等。其实,最终目的是实现报表数据一致性,减少重复报表开发,降低系统开销的战略性举措。
在业余时间,可以多补充数理统计知识,学习R、Python语言,学习常用的挖掘模型,往高级分析师路上发展!
一起加油鸭!
以上,就是今天的分享,数据分析能力听起来很大很抽象,虽是软实力但却是行业的硬要求!量变引起质变,一步步来,才能做到触类旁通,做起项目才会越来越顺手。
培养数据分析的能力,简单说就是 理论+实践
理论:是进行分析的基础。
1)基础的数据分析知识,至少知道如何做趋势分析、比较分析和细分,不然拿到一份数据就无从下手;
2)基础的统卜誉计学知识,至少基础的型御段统计量要认识,知道这些统计量的定义和适用条件,统计学方法可以让分析过程更加严谨,结论更有说服力;
3)对数据的兴趣,以及其它的知识多多益善,让分析过程拆历有趣起来。
实践:可以说90%的分析能力都是靠实践培养的。
1)明确分析的目的。如果分析前没有明确分析的最终目标,很容易被数据绕进去,最终自己都不知道自己得出的结论到底是用来干嘛的;
2)多结合业务去看数据。数据从业务运营中来,分析当然要回归到业务中去,多熟悉了解业务可以使数据看起来更加透彻;
3)了解数据的定义和获取。最好从数据最初是怎么获取的开始了解,当然指标的统计逻辑和规则是必须熟记于心的,不然很容易就被数据给坑了;
4)最后就是不断地看数据、分析数据,这是个必经的过程,往往一个工作经验丰富的非数据分析的运营人员要比刚进来不久的数据分析师对数据的了解要深入得多,就是这个原因。
科多大专注于大数据人才的培养,学员就业薪资达8K+,开设有大数据开发和数据分析课程。
39、数据分析学习内容?
数据分析零基础课程的内容主要分为业务分析和数据挖掘两个板块,业务分析会学习到excel、mysql、spss、主流的分析工具、数据可视化等;数据挖掘会学到python、机器学习等
科多大专注于大数据人才的培养,学员就业薪资达8K+,开设有大数据开发和数据分析课程。
数据分析行业是需要很多的基本功知识以及很多的实战经验学习,才能够胜任数据分析领域的工作。很多人通过学习能够提高数据分析的知识,但是数据分析能力的提高效果不是很理想。虽然学会了数据分析的知识,但是还是不会进行数据分析,要想更高效地提升数据分析能力推荐选择十方融海。十方融海专注在线教育,旗下产品,覆盖全品类实用精品课程,助力学员自我价值提升。
以成人新职业化教育培训为主,旨在持续打造优质的、匹配市场需求的音乐教育课程体系,让艺术教育变得普适化。致力于为职场人提供陪伴式技能学习服务,帮助用户提升个人实力和职场竞争力。
若想提升数据分析能力,有四个步骤:第一是重视分析,第二是进行分析,第三是组建分析的团队,第四是调整分析规划。数据分析能力的提高就是需要数据分析人员去重视数据分析,这就需要我们在进行数据分析之前盘点并梳理一下组织内部现有的分析资源。还要推举出分析领域的专门负责人,这样才能够保证好数据分析有一个好的氛围。
想要了解更多关于数据分析的相关信息,推荐选择核态十方融海。十方融海作为技术创新型企业,坚持源头核心技术创新,为用户提供听得懂、学得会、用得上的产品。该机构的解决方案和手伏社会价值获得了主流媒改薯源体报道,与厦门大学、深圳大学、华南理工大学等高校达成校企合作,探索产教融合、成人教育新模式。用科技推动教育改革,让教育创造美好生活。
简颂行单分析一下,详情冲宽如图所示野判哗
要学习Python、R、SAS等编程工具;对数据仓库需要了解可以去九道门做些实验项目;如果你觉得还是难,那就采用最基础的学习路径,直接买MYSQL关系型数据库的书看,随便到网上去找个免费的MYSQL课程听;;分布式存储HDOOP需要简单了解;云计算的技术作为了解就可以了;数据可视化不是很难,如果不要求特别美工的话,大家先理解图表,再研究研究仪表板,阿里云的Quich BI及DataV,百度的echarts都不错,主要是展示的业务结构需要规划;大数据技术:这个相对来扒瞎漏说有些难度,如果是学数神侍学统计类专业小伙伴就非常有优势了,其他专业的小伙伴也不用担心,毕竟工作后还可以继续学习,在工作中用的比较多的是聚类、关联、决策树、线性回归等,如果你不去做模型和算法工程师那么只需要会用就可以了,实在不行有专业的工具让我们用,阿里云的机器学习PAN是可以直接出结果的工具;。可以到春烂天池大赛上去看一些案例,自己做做训练。如果自学的小伙伴觉得很难坚持,那就只能去报班了,九道门之类的,如果要成为大数据分析师的话就要时间沉定,或者让老师带你,像我就是进到决明后由老师带了半年,现在基本上已经能熟练的搞这一套了。