求微分方程y"+y✀-2y=e∧x的通解

2025-01-20 21:10:45
推荐回答(1个)
回答1:

解:首先其次解y''-2y'+y=0的解为y=(cx+d)*e^x
下面求一个特解即y''-2y'+y=e^x
-----(1)
令y=z*e^x
代入(1)有(z*e^x)''-2(z*e^x)'+z*e^x=e^x
即z''e^x+2*z'e^x+z*e^x-2z*e^x-2z'*e^x+z*e^x=e^x
即z''=1
=>z=x^2/2+m*x+n
取z=x^2/2即可
故最后通解=(x^2/2+cx+d)*e^x
c,d为全体数
证毕