楼上的回答属于误人子弟。
首先,复数域上很简单,记t=2pi/n,那么
x^n-1=(x-1)(x-exp(i*t))(x-exp(i*2t))...(x-exp(i*(n-1)t))
将上面的共轭虚根放在一起就得到实数域上的分解:
n是奇数时 x^n-1=(x-1)(x^2-2cos(t)x+1)(x^2-2cos(2t)x+1)...(x^2-2cos((n-1)t/2)x+1)
n是偶数时 x^n-1=(x-1)(x^2-2cos(t)x+1)(x^2-2cos(2t)x+1)...(x^2-2cos((n/2-1)t)x+1)(x+1)
注意:任何一元实系数多项式都能够分解成一次和两次实系数多项式的乘积,即使有时候这种分解的系数不能通过基本的运算给出表达式。
实数域内此多项式仅有1这个零根,分解为:
(x-1)(x^(n-1)+x^(n-2)+...+x+1)
复数域内它有n个零根,分别是exp{i*2kPi/n) k=0,1,2,...,n-1
分解时将根代入:(x-x1)....(x-xn)