f(x) =(x^2+a^2)(x-1)/[ e^(1/x) +b]
b=-e
lim(x->1) (x^2+a^2)(x-1)/[ e^(1/x) +b]
=lim(x->1) (x^2+a^2)(x-1)/[ e^(1/x) -e]
(0/0 分子分母分别求导)
=lim(x->1) [(x^2+a^2) + 2x(x-1) ]/[ (-1/x^2).e^(1/x)]
=lim(x->1) -x^2. [(x^2+a^2) + 2x(x-1) ]/e^(1/x)
= - (1+a^2) /e
可去间断点 : x=1
lim(x->0+) (x^2+a^2)(x-1)/[ e^(1/x) +b] = 0
lim(x->0-) (x^2+a^2)(x-1)/[ e^(1/x) +b] = -a/b
跳跃间断点 : x=0
=> a≠0
ie
a≠0 and b=-e
ans : C