f(x)= x+∫(0->x) f(u) dxf(0) =0f'(x) = 1+ f(x)dy/dx = 1+ y∫dy/(1+y) = ∫dxln(1+y) =x + Cy(0) =0=>C=0ln(1+y) =x + C1+y = e^xy = -1+ e^xief(x) =-1+e^x