方法一:y=lgx2=2lg|x|,
∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;
当x<0时,f(x)=2lg(-x)在(-∞,0)上是减函数.
∴函数f(x)=lgx2的单调递减区间是(-∞,0).
故填(-∞,0).
方法二:原函数是由
复合而成,
t=x2
y=lgt
∵t=x2在(-∞,0)上是减函数,在(0,+∞)为增函数;
又y=lgt在其定义域上为增函数,
∴f(x)=lgx2在(-∞,0)上是减函数,在(0,+∞)为增函数,
∴函数f(x)=lgx2的单调递减区间是(-∞,0).
故填(-∞,0).