已知x+xˆ-1=3,求下列各式的值 :
(1)xˆ1/2 + xˆ-1/2
平方得:
(x^1/2+x^(-1/2))^2=x+2*x^1/2*x^(-1/2)+x^(-1)=(x+x^(-1))+2=3+2=5
因为x^1/2+x^(-1/2)>0
故x^1/2+x^(-1/2)=根号5
(2)xˆ1/2 - xˆ-1/2
同上平方得:
(x^1/2-x^(-1/2))^2=x-2+x^(-1)=3-2=1
故:(x^1/2-x^(-1/2))=+1或-1
(1)(xˆ1/2 + xˆ-1/2)^2=x+xˆ-1 +2=5
又因为x+xˆ-1=3,所以x>0
所以xˆ1/2 + xˆ-1/2=√5
(2)(xˆ1/2 - xˆ-1/2 )^2=x+xˆ-1 -2=1
所以xˆ1/2 - xˆ-1/2=1
x+xˆ-1=3,x+2+x^1-=5,(xˆ1/2 + xˆ-1/2)²=5
xˆ1/2 + xˆ-1/2=正负根号5
同理xˆ1/2 - xˆ-1/2=正负1
1. 5^1/2
2. 1